新闻中心

松下蓄电池放电工作原理

松下铅酸蓄电池充、放电化学反应的原理方程式如下:
放电:蓄电池对外电路输出电能时叫做放电。蓄电池连接外部电路放电时,
硫酸会与正、负极板上的活性物质产生反应,生成化合物“硫酸铅”,放电时间越长,硫酸浓度越稀薄,电池里的“液体”越少,电池两端的电压就越低。
化学反应过程如下:
PbO2 + 2H2SO4 + Pb → PbSO4 + 2H2O + PbSO4 (放电反应)
充电:蓄电池从其他直流电源获得电能叫做充电。充电时,在正、负极板上的硫酸铅会被分解还原成硫酸、铅和氧化铅,同时在负极板上产生氢气,正极板产生氧气。电解液中酸的浓度逐渐增加,电池两端的电压上升。当正、负极板上的硫酸铅都被还原成原来的活性物质时,充电就结束了。
在充电时,在正、负极板上生成的氧和氢会在电池内部“氧合”成水回到电解液中。
化学反应过程如下:
PbSO4 + 2H2O + PbSO4 → PbO2 + 2H2SO4 + Pb (充电反应)
从以上的化学反应方程式中可以看出,铅酸蓄电池在放电时,正极的活性物质二氧化铅和负极的活性物质金属铅都与硫酸电解液反应,生成硫酸铅,在电化学上把这种反应叫做“双硫酸盐化反应”。在蓄电池刚放电结束时,正、负极活性物质转化成的硫酸铅是一种结构疏松、晶体细密的结晶物,活性程度非常高。在蓄电池充电过程中,正、负极疏松细密的硫酸铅,在外界充电电流的作用下会重新还原成二氧化铅和金属铅,蓄电池就又处于充足电的状态。正是这种可逆转的电化学反应,使蓄电池实现了储存电能和释放电能的功能。修复流程约10~20小时,转换成充电3小时,即告完毕。 


松下蓄电池结构:

极板
极板是蓄电池的核心部分,蓄电池充、放电过程,电能和化学能的相互转换就是依靠极板上活性物质和电解液中硫酸的化学反应来实现的。
极板由栅架及活性物质组成。普通蓄电池正极板厚度一般为2.2mm,负极板厚度为1.8mm。
栅架由铅锑合金浇铸而成。架锑的目的是为了提高机械强度和铸造性能,但锑具有副作用,会加速氢的析出而加速电解液消耗,引起自放电和栅架腐蚀。
活动性物质就是极板上的工作物质。正极板上的活性物质为二氧化铅(PbO2)、呈暗棕色;负极板上的活性物质为海绵状纯铅(Pb),呈深灰色。
将正负极板各一片浸入电解液中,就可获得约2.1的电动势。为增大蓄电池容量,可将多片正、负极板分别并联,用横板焊接成正负极板组。正负极板相互交错嵌合,中间插入隔板后装入蓄电池单格内,便形成单格电池。在每个单格电池中负极板总比正极板多一片。因为正极板活性物质比较疏松,且正极板处的化学反应比负极质上的化学反应剧烈,反应前后活性物质体积变化较大,所以正极板夹在负极板之间,可使其两侧放电均匀,从而减轻正极板的翘曲和活性物质脱落。 [3] 
隔板
隔板的作用是使正负极板尽量地靠近而不至于短路,缩小蓄电池的体积,防止极板变形和活性物质脱落。
隔板用微孔塑料制成,具有多孔性,以利于电解液渗透,还具有良好的耐酸性和抗氧化性。隔板的面积一种做得比极板稍大些,一面制有纵向沟槽。考虑正极板在充放电过程中化学反应剧烈,电解液流通量较大,安装时隔板带有沟槽的一面应朝向正极板,且沟槽与外壳底部垂直。沟槽既能使电解液上下流通,也能使气泡沿槽上升,还能使脱落的活性物质沿槽下沉。

栏目导航

联系我们

联系人:销售经理

电话:400-886-3258

手机:13717511597

邮箱:343146356@qq.com

地址: 北京市昌平区白浮泉路10号

0
关闭
用手机扫描二维码关闭
二维码